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ABSTRACT

This paper discusses a class of compact second order accurate finite
difference equations for mixed initial-boundary value problems for hyper-
bolic and convective-diffusion equatioms. Convergenceiis proved by
means of energy arguments and both types of equations are solved by
similar algorithms. For hyperbolic equations an extension of the Lax-
Wendroff method is described which incorporates dissipative boundary con-
ditions. Upwind-downwind differencing techniques arise as the formal
hyperbolic limit of the convective-diffusion equation. Finally, a finite
difference '"chain-rule" transforms the schemes from rectangular to quad-
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INTRODUCTION

This paper discusses a class of implicit compact finite difference
schemes which treat mixed initial-boundary value problems in one and two
space dimensions for both hyperbolic and convective-diffusion equations.
The case in which the equations have constant coefficients serves to
illustrate most simply the theoretical results and the algorithmic methods,
many of which could be extended with little more than technical complexity
to variable coefficients. For example, simple arguments establish energy
estimates from which the convergence of the schemes for all fixed values
of ratios of time and space mesh parameters immediately follows. Another
important result is that the truncation errors for both schemes are
second-order in the mesh parameters; in particular, the accuracy of the
approximations involved in treating the convective-diffusion equation are

independent of the local cell Reynolds number.

Hyperbolic systems of equations arise naturally as the asymptotic
"outer expansion' connected with convective-diffusion equations (e.g.
Navier-Stokes) and the selection of an appropriate class of weak-solutions

of the former to describe shocks, boundary conditions, etc., must have ul-

timate reference to the latter equations. Two related numerical approaches

to hyperbolic equations are described here. One employs dissipative factors

Ex’ey which modify the nondissipative hyperbolic scheme by an artificial

viscosity term. The other treats the hyperbolic problem as the asymptotic

limit of the convective-diffusion equation. Each approach appears to allow

the hyperbolic problem to be treated in its nonconservative, nonsymmetric form.
The Appendix describes the underlying approximation rationale for the

schemes and also explains their relationship to conservative difference forms.




The schemes share a common algorithmic structure. The physics, as
generally described by conservation laws, is approximately expressed by a
1
"leap-frog" equation u?+% = F(u?,u? %) in which u? = u(-,tn). The inter-

n-3

mediate values u? are determined by u, and the prescribed boundary
data at t =t/ by an operator P: Pu? = u?—%. In one-dimension the solu-
tion of this algebraic two-point boundary-value problem may be obtained by
a method due to H. B. Keller [5], [6]. The treatment of two-dimensional

problems can, as will be shown, be approximated by alternating direction

methods which employ these one-dimensional techniques.

1
For hyperbolic problems the solution u? =P "u may be approximated

=}
o=

to the same accuracy as the difference scheme by the Lax-Wendroff scheme when
modified so as to include a completion of boundary conditions in a manner to
be described below.

A similar explicit approximation to the solution of the analogous opera-
tor equation which arises in the case of the convective-diffusion equation is
possible but is not described here. Rather the direct development of a tri-
diagonal algebraic system which can be used to determine u? is described
in order to help clarify the role of a function q(8) of the cell Reynolds
number 6 which arises in the primary form of the difference equations. The
simpler scalar problem illustrates a singular perturbation problem as
|6] + =, the limiting solution of which solves the related reduced hyperbolic
problem. For |6| > «» the function q(8) acts as a switch which reduces
the above-mentioned tridiagonal system to an upper or a lower bidiagonal
system corresponding to an upwind or downwind differencing technique in
which one of the parabolic boundary conditions becomes an ineffective con-

straint for the reduced hyperbolic problem.
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The ADI algorithm which yields the solution operator P-l for one-
dimensional hyperbolic problems makes essential use of a hyperbolicity
assumption which prevents the algorithm from being employed in physical
problems in which, say, a change from subsonic to supersonic flow occurs.
No such restriction occurs in the corresponding solution algorithm for
the convective-diffusion equation, however.

Our principal description of results pertains to rectangular compu-
tational cells. In Section 1D a simple 'chain-rule" is described which

extends these results to quadrilateral cells.

1. HYPERBOLIC PROBLEMS

1A. A Dissipative Compact Scheme

Consider the following strictly hyperbolic mixed initial-boundary value

problem for U = (ul, uz,...,ur)T:

a) Ut+AUx+BUy=O, 0<x, y<1, 0<t,
(1.1) b) U= U°, t =0,
c) YU=g on T,

where TI' 1is the boundary of the unit square. Unless otherwise stated, A and
B are assumed to be symmetric, nonsingular, constant matrices with real eigen-
values and the boundary operator Yy to be such that the homogeneous boundary
condition YU = 0 results in the dissipative boundary conditions

D% > 0, x = 0,1 and (-1)7™L

T
U'BU >0, y = 0,1. These conditions allow
a simple energy-norm estimate to be given for the solution.

Scheme

We propose the following compact finite difference scheme to treat (1.1)

(c.f. Rose [14], Wendroff [16], [17]): with U? = U?k

a) 6 Ul +As UT+B s U =0 (leap-frog)

n _ n , At n
(1.2) b) My U, = My U, + € A Gx U,
_ n ., At | n

c) u 0, = Hy U, + €, ° B 6v U, .




in which €y ey are non-negative parameters.
Both the convergence of this scheme and its dissipative character are
simple consequences of the following energy argument: multiply (1.2a) by

ut(U?)T and employ (1.2b,c) to obtain

0= %[: 6t(Un)TUr_l + 5x(U‘f)TAU‘.‘ + dy(Ur})TBU{‘]

At n,T n At n,T n
te 5 (A U) (A8 U)) + €y 2 (B6yU_) (B6yU.) .

Summing on the spatial indices, employing the fact that ex,ey are non-
negative, and recalling that the boundary conditions were assumed to be

12= z@™HTW®) in

dissipative there results | U%] < | U? where | U

which the strict inequality applies unless € = ey = 0.
An immediate consequence of this result is: the solutions of the
difference scheme (1.2) converge to the solution of (1.1) as the mesh para-

meters Ax,Ay,At tend to zero for any fixed values of the ratios

kx==At/Ax, Ayé=At/Ay. The scheme is nondissipative when €, = €, = 0.

Accuracy

The accuracy of the scheme (1.2), as indicated by a truncation error
estimate, is most easily examined as follows:

set

At /2,
(1.3)

® o+ A

+
lte )T, T. = (1€ )T,
(1te) y = (te)

and observe that (1.2b) results in

n -1 n_ n-%
U, =1 [(ux+€xTA6x)U' U, :l

(1.4)

-1[ nt+3 nf |
T [U. —(ux+exTAch)U:] ;




similar results obtain from (1.2c). Apply these expressions for 6tUn

in (1.2a) to obtain

+ n _  n-%
(h + T A8 +TBS U, = U5,
—TTAS - n _  n+}
(ux TxAéx TBGy)U. U, s
so that
+ n+l _ - _ n _
(1.5) (u + T, A8 +TBS)U, (= T A8 TBE U, = 0.

or, more compactly,

nt+3 n+3 n+d _
8,1 U, +( A6x+de)utU_ + £ TAS_§ U, 0.
Similarly,
n+3 n+3 n+i _
8, UM + (A6x+ B(Sy) b U2 + e TBe 5 UTTE < 0.
Clearly,

2
truncation error = -¢_TAU_, + 0(17),
x T xt

2
-eyTBUyt + 0(t7),

and it is evident that the scheme is second order accurate when the dis-
sipative terms ex’ey vanish.

In one dimension B = 0 and Ut = -A.Ux so that the truncation error
is EXTAzUxx which shows a relationship to an artificial viscosity term.
The dissipative energy estimate given earlier, however, shows directly that

the terms EXTAUX and eyTBUyt yield dissipation.

t




Amplification and Phase Error

Consider the scalar equation u, + au = 0 where a>0Q. 1Initial data
given by u0 = exp(ibx) are transformed by (1.2) into v = p exp[i(6x-y)]
while the differential equation carries uo into v' = exp[if(x- aAt)].

Eq. (1.5) shows that

2.1+ (@ )?

(1.6) < 1,
1+ @h?

where AT = (1% e A, A = At/Ax, while

(1.7) 3y = arc tan(a) tan(6/2)).

Thus Ipl <1 for ex > 0, i.e. (1.2) is dissipative for ax > 0.

For aA =1, y = 6. Since tana¢ > atand, 0 < a < 1, them Y < 6
for 0 < a) < 1; similarly ¢ > 0 for aix > 1. Thus the wave speed
associated with the difference equation is greater or less than the wave
speed of the differential equation according as the CFL number is greater

or less than unity.

In the non-scalar case an analysis of the amplification matrix
associated with (1.2) yields an inequality similar to (1.6). This obser-
vation also implies the convergence of the scheme (1.2) since it is,

clearly, consistent with the differential equation (1.1).

1B. Solution Methods

We shall find it convenient to introduce separate notations for the

n . .
values of U  associated with the sides of a computational cell n? and

thus rewrite (1.2) as

6, U" + AS. V™ + BS W* = 0,
| S X e y e
(1.2)" W UT = u VY 4+ e Tas VD,
X X
b UT = WD+ e TBS WD .
. y y ye




Write def +
Px = (uxi-TxAﬁx),

(1.8 def +
Py = (uy+-TyBGy),

where T:, T; are given by (1.3).

The argument which led to (1.5) allows us to re-express (1.2) as
n n
a) 8.U. + A V. + B(Syw? =0,

e

: n
(1.9) b) PV + TBayw‘_‘

|

¢) P W + tAs V®
yo X o

These equations lead to the following:

Two-step Algorithm
3

a) with U?- given as "initial" conditions, solve (9b,c) for

V? s W? with the boundary conditions specified by (1l.1lc), then
U‘_“'é

b) solve the leap-frog equations (1.9a) for and repeat the

procedure for the next time step.

Note that dissipation is effected by simply increasing the value of
T 1in step (a) as (1.3) indicates.

A formal solution to (9b,c) which is accurate to 0(T2), the same

as the order of accuracy of the difference equations (1.9), is given by

v® = p L1 - s p lyut
* x y y L]
(1.10)
W = pl(1- ras_p 2
. y X X .
. . . -1 _-1
The following discussion will clarify that the fact that Px R Py

may each be obtained as the solution of one-dimensional two-point algebraic

boundary value problems.




1C. The Solution Operator P_1

Consider the one-dimensional problem arising from B =0 in (1.1). The

difference equations (1.9) then reduce to

n n=
a) S§U+AS V] =0,

(1.11) o
b) ‘ PV, = U3,

in which the boundary conditions (1.1lc) are incorporated as, say,

+ -
YAU(O,y,t) = g(0,t) and YAU(l,y,t) = g(1,t) in which, if A has kZ
. - + _ o+ - _ .-
eigenvalues and kA negative eigenvalues, then rank Yy = kA’ rank Yy T kA'
Equation (1.11b) together with these boundary conditions may be written
in the form
YUg = 8(0,t™),
n n n-%
(1.12) BI-A MU, + FI+A MU, = Uy ., i=3,3,...M3,
Y Uy = 8(1,t"),

the solution of which, as an algebraic two-point boundary value problem,
has been described by H. B. Keller [5], [6] in terms of a block-tridiagonal
systems of equations (c.f. deBoor and Weiss [2], Lentini and Pereyra [9]).

An explicit approximation to P;l may also be given in terms of the
Lax-Wendroff method which, if

def

(1.13) Q = (u -TAS),

is given by




S U™+ A8 V" =0,
t X °
(1.14)
n-%

el
V. = QU

for the initial value problem for Ut + AUx = 0. We recall that the Lax-
Wendroff scheme is dissipative ([11]).

Consider (1.11) in the nondissipative case € = 0, so that
(1.15) Pe= (W +TAd),
and observe that, formally,

2
_ Ax 12,2, .2
(1.16) QxPx =1+ —Z—-(I XXA )6x,

where Ax = At/Ax. Multiplying (1.11b) by Qx and incorporating the

boundary conditions (l.lc) there results the equivalent system

+ n
YaVo = 8(0,t)
a)

~p vy = 0%

(1.17) b) QP V" = quf‘"l’ ,

+ -n  _ _+ n-%
YaPxM-2 = YaUm-3

<
<3
gt~
L

=g(l,t) .

Equations (1l.17a,c) may be solved for Vg and V; with the result,

say,
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a) vy = GO(V? Ug_%) .
(1.18) -
b) Vy = Gl(Vg—l,Uﬁ—i)'

Next, as is most easily verified by considering the case in which A is
expressed in diagonal form, for IXXAI <1 the solution of (1.17b) may

be approximated with second order accuracy by
(1.19) Ve o= quz'é , k=1,2,...,M-1,

following which the boundary values Vg, V; can be obtained from (1.18).

Let Q, dindicate the operator Q extended so as to include the
boundary values determined by (1.18). Then the extended Lax-Wendroff

approximation to P;l is described by

s U™ + AS V" =
t - X °

J
o
-

(1.20) n

V. = QU .

Recalling earlier remarks we conclude: the solution of (1.11) in the
nondissipative case can be approximated to O(TZ) by the extended Lax-
Wendroff operator QX if Ax = At/Ax 1is restricted by the CFL condition
IAXAI < 1; however, the resulting approximation to (1.11) will be dissipative.

By employing P;l ~ ax’ P;l = ay in (1.10), combining with (1.9a),

and omitting terms of 0(T3) the two-dimensional form of the Lax-Wendroff

scheme results (now generalized to incorporate boundary conditions).
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1D. Difference Equations on
Quadrilateral Cells -~ a Transformation Rule

A simple finite difference analogue of the differential chain rule can
be given which allows the compact difference scheme which has been described
for rectangular computational cells to be applied on quadrilateral or tri-
angular cells. The transformation does not affect the accuracy of the
difference scheme.

Assume that the underlying domain D is partitioned into quadrilateral
subdomains; a typical such cell T whose vertices are the points Ql’ Q2,

Q3 and Q4 is indicated in Figure 1.

R T L)
/

Figure 1. Local cell coordinates (§,n) in the cell 7.
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1)

The area of T ois O = w(@) = %(Q1Q3 x Q4Q2). As indicated in the
figure the points Pl’ PZ’ P3, and P4 are the midpoints of the sides of
m and PO is the point of intersection of P1P3 and P2P4.

The (x,y) coordinates of the points Pi will be denoted by
(xi,yi), i=0,1,2,3,4. With PO as center introduce new coordinates

£ = £(x,¥), N = n(x,y) with axes as indicated in Figure 1 and with

respect to which we may also write
Pi = P(gi’ni), i=0,1,...,4, with go =Ny = 0.

We employ the following notations for central difference and averaging

operators:

Agwo = (W(py) -W(P3)),

o = (W +W(R)/2,
(1.21)

AY]WO = (W(Pz) - W(P4)) ’

pnwo = (W(P2)+W(P4))/2 .

We also set

def (A y =A.y
(1.22) Jz(” E)%w,
-A
nx Agx
where
def
1.23) w = (Agx- Ay - A X°Agy)

Thus
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Ax- Ay
: -1
(1.24) J o= ( & & )
A
A x ny
We shall now show that, when €, = Sy = (0, the difference equations

(1.2) which provides a second-order accurate approximation to (1.1) for a
rectangular grid may be expressed in terms of values at the points

PO’ Pl""’ P of the quadrilateral by

4

A

a) [at+(A,B)J(A‘5)]U(pO,tn)
n

0,.

]

(1'25) (ut-U£)U(Po,tn) Os

b)
(Ut-un)U(Po,tn) = 0.

Comparing (1.25a) with (1.2) we see that the transformation between the

rectangular and quadrilaterals cells is given by the ''chain rule"
8 A
(1.26) ( x) =3 ( ‘5) .
A
§y n

The verification of this result depends upon the same argument as
that which leads to (1.2) in the case of rectangular cells and which is
described in the Appendix. We first observe that a simple class of solutioms
of the differential equation (1.1) in the quadrilateral cell T for

lt-tn[ < At/2 1is given by
U(x-x5, y- Y, t-t)=2a + [(x-x5)I- (t-t )Alb
+ [(Y‘YO)I— (t"tn)B]_C_ ’

where a, b, ¢ are arbiltrary vector parameters associated with the approxi-

mation in T. The points (Pi’tn)’ i=1, 2, 3, 4 and the points (Po, tn—é)
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and (PO, tn+1) are center points of the faces of the cylinder set
2

[mx (’t-tnl <At/2)]. dence

U(Pi’tn) = a+ (xi-xo)h_ + (yi-yo)g. i=1,2,3,4.

The result of eliminating the parameters a, b, ¢ from these expressions
is just (1.25).
Equations (1.25) may also be expressed (by the argument which led to

(1.5)) by

g) utU(PO’tn) = 0,

|
o

_ A ~

Y

Lun<5t+ (A,B)J (A ) utU(PO,tn) =
o/

Observing that

Ag 3, )
J-( ) = ( )+0(|w|),
A )

n y

the second order accuracy of the approximation on 7 is immediately apparent.

1E. Numerical Experiments

This section reports on a number of numerical experiments which were con-
ducted to validate the theory described above. The numerical results given
for certain Riemann problems indicates that the scheme (1.2) may be extended
to nonlinear problems in which A and B need not be symmetric. All of the

methods reported upon employed the construction of P-_1 indicated by (1.12).
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Experiment 1.1

-1 0 0 -1
U_+ AU_ + = = =
The equation . X BUy 0 with A (0 1) » B ( 0) was

solved using (1.2) with the initial condition

cos X + cos y
U(x,y,O) = ( ) ]

cos x + cos y

with boundary conditions

+
u2(0,y,t) Y U(0,y,t) = cos t + cos(y+t),

L}

ul(l,y,t) = Y;U(l,g,t) cos(l+t) + cos(y+t),

ul(x,O,t) = Y;U(X,O,t) cos(x+t) + cos(t),

uz(x,l,t) = Y;U(x,l,t) cos{(x-t) + cos(1+t).

The analytic solution is

cos(x+t) + cos(y+t)
U(x9y’t) = ( )

cos(x-t) + cos(y+t)

Table I illustrates the maximum value of the errors for the components
of U= (ul,uz). These results show the quadratic convergence expected.
Mitchell (c.f.[10], Table 10, p. 189) describes experimental results for
this equation employing an ADI method and the Lax-Wendroff method in which
both components of the solution were specified at the boundary. His results
appear to be considerably more accurate than those reported here, a fact, we
believe, which is due to his employing boundary data given by the analytical
solution. This example emphasizes the important influence the treatment of

boundary conditions can have upon solution methods.
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Table 1
parameter values number of DAXimum errors

time steps u u

1 2
-1 -1

a) Ax = Ay = 0.1 10 0.386 x 10 0.377 x 10

At = 0.1 20 0.233 x 1071 0.226 x 101
40 0.378 x 10"t 0.370 x 10°1
b) Ax = Ay = 0.05 10 0.160 x 10t 0.160 x 10T
At = 0.05 20 0.190 x 101 0.188 x 107L
40 0.114 x 1071 0.113 x 10~ T

Experiment 1.2

Equations (1.9) are also equivalent to the system of equations

-1
a) Pvl=yu"% - qBS W,
x L] [ ] y L]
n —
(1.28) ) V= u W,
c) 5.U" + AS_ VI + BS W= 0.
x L] y L]
Employing (1.28b), then
2 n
1.29 W, == V.- L),
( ) y ij Ay Gy ij 1,3—%)
so that (1.28a) is equivalent, when €, = Ey = 0, to
At n n-% At
.3 == = at
(1.30) [(14-(Ay)B)ux4-TA6x]Vij Dl L

For scalar equations (1.28b, c) and (1.30) permit the solution to be
explicitly determined since, if w? -3 1s known, Vo ; may be determined
sJ72 ’

from (1.30) and W? 43 from (1.28b), from which U? is then determined
’ 2
from (1.28¢c).
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Table II describes numerical results employing this scheme for the

scalar equation u_ + U, + 2uy 0 with the initial and boundary condi-

t

tions

u(x,y,0) = cosx + cosy s t=20
u(0,y,t) = cost + cos(y=-2t),
u(x,0,t) = cos(x-t) + cos 2t ,

the analytic solution of which is u = cos(x-t) + cos(y- 2t).

Table II1

parameter values number of maximum error
time steps

a) Ax = Ay = 0.1 10 0.7 x 1072
At = 0.1 20 0.545 x 1072

40 0.465 x 102

b) Ax = Ay = 0.05 10 0.215 x 102
At = 0.05 20 0.173 x 1072

40 0.135 x 102

¢) Ax = Ay = 0.1 10 0.301 x 107L
At = 0.2 20 0.229 x 1071

40 0.205 x 1071

d) Ax = Ay = 0.05 10 0.766 x 102
At = 0.1 20 0.709 x 102

2

40 0.514 x 10
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Experiment 1.3

Under suitable boundary conditions (1.1) may have a steady-state
solution which may be calculated from (1.2) by letting n + ©. According to

(1.2) the difference equations
a) Aaxvij + dewij = 0,

b) ujwij = uxvij,

(1.31)

may be expected to describe the steady-state solution more directly.

Employing (1.29) in (1.31a) we see that (1.31) is equivalent to the system

4y -
(Bu + 5 Aéx)vij B, 4 1.

(1.3

uxvij = uxwij'

For scalar problems, these equations yield the steady-state solution in
an explicit manner.

Table III illustrates the results of employing (1.31)' to treat the
scalar equation u, + au + buy = 0 with the boundary conditions
u(0,y,t) = exp(-y/b), u(x,0,t) = exp(x/a) which are assoicated with the

steady-state solution u(x,y) = exp(x/a-y/b).

Table III
parameter values maximum error
a=b=1; Ax = Ay = 0.1 0.307 x 1072
Ax = Ay = 0.05 0.808 x 103
a=1,b=2; Ax = Ay = 0.1 0.123 x 1072
Ax = Ay = 0.05 0.332 x 1073
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The last two examples illustrate numerical treatments which are
possible for the scalar equation but which cannot be directly applied to
systems of equations. However, they suggest that a suitable extention of

these methods may also be adapted to treat systems of equations.

Experiment 1.4: Riemann Problems

For nonlinear one-dimensional problems, A = A(U) and it is natural
to apply (1.2) in which the coefficient A 1is determined by uxA(U?) or
A(uxU?). Because (1.2) is equivalent to an artificial viscosity method it
may be expected that the dissipative scheme will converge to the physical
weak solution of the nonlinear conservation system Ut + Fx(U) =0 ([11]).
The relationship of (1.2) to this conservation equation is described in
the Appendix.

In one-dimension the nonconservation form of the Euler equations

for inviscid fluid flow is described by

Ut + AUx o,

where U = (p,u,p)' (p = density, u = velocity, p = pressure) and

p 0
(1.32) A= u p_1 ,
YP u
(y = 1.4).

The results of several numerical experiments with Riemann problems
employing the two-step method will be presented here.
Figure 2 illustrates the numerical density profile of a shock traveling

to the right with speed 0.979 which results from the initial conditions
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x <0 x>0
= 0.313 0.219

u=0.3 0.0

p = 0.166 0.1

The indicated values of p and u on the left and p on the right were
used to supply boundary condtions. The dissipation factor in (1.2) was

€ = 0.15 A_l and Ax = .01. The value X = 1.04 in Figure 2a approximates

the situation in which the average value of the CFL numbers before and
after the shock was 1. The smoothness of the transition across the shock
and the fairly accurate tracking of the correct shock position (indicated
by the vertical line) are evident. Figure 2b illustrates the result of
increasing the CFL number on both sides of the shock ( A = 1.3) while in
Figure 2c the average CFL number was reduced ( A = 0.7). The post shock
oscillation when A = 1.3 and the preshock oscillation when A = 0.7
which was evident in the figures may be interpreted as the influence of
the CFL number on the wave velocity as discussed in lA.

Figure 3 illustrates the p, u, p profiles resulting from the initial

conditions

x <0 x>0
= 1.0 0.125

u = 0.0 0.0

Pp=1.0 0.125

The analytical solution, represented in the figures by the continuous line,
yields a shock with speed 1.822 and a contact with speed 0.878. The calcu-
lated values at time = 2.4 with Ax = 0.1, A = 0.6, and a dissipation factor
of €= .125Xd'y161d8d fairly good agreement with the exact solution.

The relative error of the shock speed was estimated to be 3% and the relative
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error of the total energy was calculated to be 0.3%. The value X = 0.6
chosen results in an average CFL number = 1 through the shock zone. In this

experiment the matrix A in (1.2) was estimated by A;

n
= uxA(Ui).
In both of the above experiments the dissapative factor € was kept
constant for all spatial points. (As noted by a reviewer, it would have been

preferable to have chosen € to be independent of A.)
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2. CONVECTIVE-DIFFUSION EQUATIONS

2A. A Compact Scheme

The scalar convective-diffusion equation

2 .
(2.1) u, + au  + buy - wW'u =0,

describes the transport and diffusion of vorticity in two-dimensional,
incompressible, viscous flow and serves as a model for the more general
Navier-Stokes equations. We shall limit our discussion to the scalar
problem partly for expository purposes and partly because the modification
required to treat certain types of systems of equations can be readily
described in terms of the scalar results.

The dimensionless parameters ex = alMx/2v, Gy = bAy/2v play an important
role in discussing finite difference schemes for (2.1). Borrowing from
fluid dynamics applications of (2.1), lexl and |9y| are the local cell

Reynolds numbers associated with each dimension. The function
-1
(2.2) q(6) = cothb -6 -,

will play a fundamental role in our development and for which the following

approximations are useful: with sgn® = 6/|6},

i) q(®) = 68/3, 8 small

(2.3) -1
sqnf - 6 —, 9 large.

113

ii) q(6)
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Finally, we write

def , .
= a6, q

M o

(2.4) q,

Now write (2.1) as the system

u, + aux + buy -~ (vxi-wy) = 0,
2.1)° u - v = 0,
uy -w=0.

The origin of the following compact scheme is described in the Appendix:

n n n _
a) (6t+-a6x4-b6y)u. - vav. - véyw. = 0,
(2.5) b) MUl = el = uoul,
n, A n _ n
c) 6xu. + qxéxv_ = WV,
Sut +q 8w = pw.
yro T GyOyte T HyY.

A proof of the convergence of this scheme again follows by an energy
argument which we describe in one dimension. Omitting indices, for Ax +> 0O
we may neglect ax in (2.5¢) so that if (2.5a) is multiplied by U u there
results after employing (2.5b,c) 0 = % Gtuz + \)(uxv)2 + 6x(%-u2-vuv).
Summing on the implied spatial index and assuming homogeneous boundary condi-
tions for u there results || u"[ < || uO” where || unH2 = Z(un)zAx and in
which the strict inequality holds unless u = const. Thus (2.5) is dissipa~
tive. The result implies that u? converges to the solution of (2.1) for
any fixed value of the mesh ratio Ax = At/Ax.

Arguments similar to that employed in Part 1 for the hyperbolic problem

lead to the following:
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Two~step Procedure

i) eliminate u?+% in (2.5a,b) to obtain, with T = At/2,
(u_+ tad_+ 166 )un - VISV - vTs wh = un—é’
x x y L] x . y L .
(2.6)
n n n _ n-%
(uy+-Tan4-Tb5y)u_ - VTGXV. deyw. =u,_ =,

which, with (2.5c) leads to an implicit system of equations which, with

boundary conditions for u? specified, determines u?, v?, w?.

ii) with the solution (u?, v?, w?) so determined, u?+% is then

obtained from the leapfrog equation (2.5a) or from (2.5b).

2B. Solution Methods

The first of the two-step solution method described above requires the
solution of an implicit system of equations. We shall here examine several
approaches to this problem.

(1) An ADI Method

The system under discussion is described (2.6) and (2.5c). A
more compact description of these equations can be given which shows the

close relationship to the hyperbolic case. Let

def ,u_ + tad -VT
P (1) = ( x x R )
GX qxsx - ux
def /u._ + TbS -VT
P (t) = ( y s y . ),
y Iy®y = Hy

and



-30-

def (aéx -v6x

) .
0 0
def [b$ -6
Rz(y y
y 0 0

av}

"
~

~
N
——
< =
o 3 e
~ —

+

o

<
o —
os,':! o‘:
~—

It
A
[~

o L ]
S r—

(2.7)

la~]
4
~~
)
N’

5 e
= I
S
+
~
©

»
< (=
B e
~—
L}
—
=1
o * R
i
N ——

As in the hyperbolic case the solution, to terms of second order in T,

can be obtained from

n-%

u
P_l(T) (I - TR P_l('r)) ( ) ) s
X yy 0

un—%
P;l(T)(I—TRxP;l(T)) (0 ) ,

in which the solutions represented by P;l, P;l can be obtained by Keller's

—

< [~

(3=

N —
It

(2.8)

—

.2 [+

N ——
[]

method for algebraic two-point boundary value problems.

A discussion of the truncation error for (2.5) follows arguments similar

n+3

to those for the hyperbolic problem. The elimination of wu in (2.5)

-3

led to (2.7); by eliminating u? instead there results
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o o un+%
o (5) - ) -0

It then follows that

o & o
P_(1) (v?+1) - Px(—T) (vn) + AtutR_.y (w?+é) =0,

un+1 o un+§
Py(r) (w;+l) - Py(—r) (wﬁ) + AtutRx (vﬁ+%) =0 .

The truncation error as estimated from these expressions is O(Atz) and

is independent of Gx, Gy.

ii) A More Efficient Method

The solution of (2.8) involves the solution of one-dimensional

problems of the form

g,
(2.9) PUT = ,
0

where P = (Px,Py) and, accordingly, U? = (u?,v?)T

or U? = (u?,w?)T.
Keller's method applied to (2.9) exploits the fact that the system with
its associated boundary conditions can be written as a block tridiagonal
system of equations and solved accordingly. We shall now show that the
solution for the scalar component u? of U? can itself be obtained as the

n n

solution of a scalar tridiagonal system and from which v or w_ can then

easily be obtained.
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For the hyperbolic limit (v » 0) this tridiagonal system reduces to a
bidiagonal system which describes an upwind or downwind differencing
method for u? depending upon sgna . The solution method thus not
only reduces the complexity of the computation of U? but also illumi-
nates an aspect of flux-splitting methods which have been employed for
hyperbolic equations (c.f. Steger and Warming [15], van Leer [7]).

The details of this reduction are: the equation

un gn

Px( rll) ) ( 1) ,
v, 0
1

X n n . n
involves the values U1 Vi+% in a cell. Solving for v in terms
s ns .

of u? yields
VALVE L = A+ q) @+ A a) +k Ju + 3[(L+q)(1-2a) -k Jub_, - (1+q)g;
x'i+3 2 x X x i+ 0 ® x X x' i-% %’ 84
VAV o = 3 (q - D (A+Ar a)+k Jul,, + 3[(q -1)(1-A a) -« o+ (1-q)g;
x i-% x X x' ity 0 FtVix X X" i-% x’%i’

(2.10)

where q = q(ex), Ax = At/Ax, and

def

n ®

Ko 22é£5 = 6—1 « a) .
(Ax)

X X

Setting k = i+3 and equating the representations for v? given above there

results
(2.11) 3[(1-q)@+Xr @) -k Jul  + 3[(A+q)(1-1a) -« Jul 4

+ (1+-aqux4-Kx)uE = (1-qx)UE;§ + (l*'qx)ui:i'
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This tridiagonal system may be efficiently solved for u? when
boundary values for u? are prescribed. Tor lexl * @ kx + 0 and

g > sgn a so that (2.11) results in

(2.12) 31+ ) @)y + 3(1- A8 | = uﬁ_%.

This may be solved by forward marching when a > 0 and by backward marching
when a < 0. Equation (2.12) exhibits a familiar result for singular perturba-
tion problems: in this case, for v + 0, one boundary condition is ineffective
for the limiting problem.

The preceding discussion may be extended to systems of equatioms if
a can be written a = T—la T where T 1is nonsingular and o is a real

diagonal matrix. In this case
-1
q(8)) = T “q(adx/2v)T,

and explicit upwind-downwind forms similar to (2.12) again result if

characteristic variables are employed.

2C. A More General Problem

Because of its formal similarity to the Navier-Stokes equation it is

worth examining the modifications required to treat the more general equation

(2.13) u, + au + buy - (cuxx+2duxy + euyy) = 0,

where ce z_dz.

We now define

(2.14) 0, = ¢ Larx/2, 0, = e Thay/2,




~34-

and
r(0) = 8t = (sinn 97t
(2.15) ~ 8/6, 6 small
=91 § large.

The approximation (described in the Appendix) which led to (2.5)

in the case of eq. (2.1) now leads to
n n n, _
a) (Sti-aéki-bﬁy)u. - (5xv 4-6yw.) 0,

n _ n _ n
b) Hel, = Hpu, = uou

(2.16)

n _a n ~rg n
(c6x4-d6y)u. (ux qxéx)v. + r(\y)éyw_ >

c)

n ~ n ~ n
+ - 8 )6 s
(d<5x e6y)u. (uy qyéy)w. + T( y) yv.
~ - ~ A -
in which we have set q(ex) = %? cq(GX)c 1 , q(ey) = 7} eq (ey)e l,

oy - Dx -1 oy = by -1
r(ex) =3 dr(ex)c , and r(ey) > dr(ey)e .

The two-step scheme described for (2.5) again applies for (2.16) if the
operators RX and Ry are suitably modified. 1In particular, Px and Py
are unchanged so that the solution u? is again determined by an equation
of the form (2.11). Thus the occurrence of the mixed derivative term uX
in (2.13) simply leads to added coupling terms in (2.16c).

The fact that the coefficient matrices ¢, d, e which occur in the
Navier-Stokes equations are singular prevents a direct extention of these
results to this important problem. The present discussion suggests the type

of result which may be expected, however.
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2D. Numerical Experiments

Experiment 2.1

Th = - - - =
e solution u = cos(x-t)exp(-vt) of u, + ug - ovu 0 was

computed at t = 47 for v = 10_2 and the values Ax = m/20, m/40, 7/80.

The L1 norm of the numerical errors as a function of ) = At/Ax are

given in the Table 1IV.

Table IV
Ax | A =0.5 A=1.0 A =2.0
7720 | 1.7 x 1003 0.5 x 1073 9.3 x 1073
7140 | 0.3 x 1073 0.27 x 1073 2.5 x 1073
7/80 | 0.8 x 10°%  0.07x1070 0.6 x 1073

The results confirm the assertion made earlier that (2.5) is second order
accurate. Similar results were obtained using the L2 norm.

Figure 4 indicates steady-state boundary layer profiles (t = 10)
for u, + u, - vu o= 0 with boundary conditions u(0) =1, u(l) = 0 and
initial condition u(x,0) = (1-x); (2.5) was employed with Ax = 1/20 and
A = 1. The exact solution is indicated by the solid curves. The numerical
results indicate fairly close agreement with the exact solution in the

neighborhood of x = 1 for various values of Vv, the agreement being within

the range predicted by the theory both inside and outside of the boundary layer.

Experiment 2.2 - Burger's Equation

Figure 5 describes results for Burger's equation u, + (u2/2)x =vu

-2

3

with u(x,0) =1 for x < 0.5 and u(x,0) =0 for x> 0.5 for v =10

10-3 at time t = 1.0 with Ax = 1/50 and A = 1.0; the vertical line in-

dicates the position of the shock for the limiting value v = 0.
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- Figure 6 illustrates the solution of Burger's equation at time

.

o T o= 2.0 (steady-state) with boundary condition u(0) = 1, u(l) = -1
and initial condition u(x,0) = 1- 2x. The maximum value of the local
cell Reynolds number was RC = 112.23.

Experiment 2.3

The two step solution method (2.8) and (2.5a) was employed to calcu-
late the steady-state solution of u, + 2ux + uy - szu = 0 which is
determined in the unit square by the boundary conditions u(x,0,t) = 0,
u(y,o,t) = 102, u(x,1,t) = 102, u(l,y,t) = 0. For v = 0, the solution
is u=0 for y < x/2, u-= 102 for y > x/2.

The data presented in Figure 7a illustrates solution values obtained

when Ax Ay = 0.1 for v = 10-—2 and 10-3. Figure 7b describes results

when Ax 0.1, Ay = 0.05 for v = 10”2 and v = 10_3. The oscillations
evident behind the limiting (v = 0) discontinuity in Figure 6 reflect the

typical behaviour of a second order method at a discontinuity unless the

mesh is adjusted accordingly.

CONCLUDING REMARKS

This paper has described related implicit difference schemes for
treating hyperbolic systems of equations and the scalar convective diffusion
equation both of which share a common approximation rationale as well as a
common solution technique. Numerical evidence indicates that both schemes
can be employed to treat nonlinear problems. The accuracy of approximation
to the dissipative hyperbolic problem is proportional to an artificial dif-
fusion parameter € while the approximation to the convective-diffusion is
second order accurate and is independent of the value of the local cell Reynolds
number. For both schemes conventional energy estimates are available when the

coefficients are constant.
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APPENDIX A

The Underlying Approximation Method

The schemes described in this paper have their origin in a common
approximation method which we describe for one space dimension.
Divide the fundamental solution domain D 0 < x < 1, 0 <t < T

uniformly into M°*N rectangular cells each of area AxAt. If W; is

n +
a typical cell with center point (xi,tn) 1Bt Oii%’ T? 3 denote its

vertical and horizontal sides as indicated in Figure 7.

Figure 7

There are thus a total of M+ 1)N + (N+1)M sides of which 2(M+N) 1lie

on the boundary of D and 2MN - (M+N) 1lie interior to D.

_ n+# n
Consider first the equation Ut + AUx = 0. If Ui and Uit% are
the average values of U on the sides Tgt%, 62+% of ﬂg then the MN conditions

n n
(A.1) 6tUi + A(SXUi = 0,

will imply that Gauss' theorem holds on the union of any contiguous set

of cells. Suppose now that the global solution is approximated by functions
which are solutions of the linear differential equation in each cell each of
which depends, say, upon o parameters, i.e., if gh,92,°°- Qa are

linearly independent solutions in a cell, we let




O
(A.2) U= 3 dgcy.

If o = 2 the mixed initial-boundary value problem (1) may be
approximated as follows (c.f. Rose [14]): set 91 =1, 92 = (xI~ tA);

then the parameters C1s & will be determined by any two of the

+
four average values Ug_% and Ug+% associated with the sides of

n
i

these values one of which is expressed by (A.1) and the other by

m Elimination of the parameters yields two relationships between

n

n
(A.3) utUi = uin.

There thus result 2MN conditions for the 2MN + (M+N) average

values. By imposing the boundary and initial conditions in (1) a

determined system of equations results. As we have shown through the

use of an energy argument, when A 1is symmetric and constant this

approximation method converges in an L2 norm for smooth solutioms.
If, more generally, we consider the conservation equation

Ut + Fx(u) = 0, Gauss' theorem requires that
n n _
(A.4) 6tUi + GxFi =0,

n . n
where now Fi are average flux values on the sides of 0i+

n
3 of LFE
Let A = gradF and consider the following problem: construct a solution
n s
U(x,t:ﬂi) in each all cell depending upon two parameters such that
n
U(x,t:ni) yields the same average values of the flux values Fo , and

its
t3

n
the same average values Ui as the solution itself. If

U(x,t:TTr.;) = c

n
1t (x-Ait)Ez,

n:- n n =
then AiUx(O:ﬂi) =c, = Fi where Ux(ozﬂz) indicates the average values
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calculated on the side 0. The result of expressing €, and ¢, in terms

nt® _n

of Ui s Fiié is then

‘ n n _ n
(A.5) AiutUi = uxFi.

Equations (A.4) and (A.5) obviously state (A.1) and (A.2) in a more general
form. In numerical experiments conducted in this study we found no advantage
in using (A.4) and (A.5) instead of (A.1l) together with the dissipative modi-
fication of (A.2) described in (1.2). The numerical results presented in
Part I indicate that the dissipative scheme based upon (1.2) appears to pro-
vi&e accurate approximations to nonlinear conservation laws.

For the scalar equation u_+ au - vu . = 0 similar arguments

t

show that, if v = Us then

n

n n _
(A.4) étui + anui - vl v, =0,

X1

expresses Gauss' theorem in terms of the boundary data of cells. Employ-

ing (A.2) with 2 = 3 and the elementary solutions

0, =1,

(A.5) QQ = (x- at),
b, = eax/\)

3 b

an elimination of parameters yields the scheme (2.5) (l1-dimension) which is
a determined algebraic system under the given initial-boundary values. Again,
the energy argument given earlier establishes the convergence of this approxi-
mation scheme when a 1is constant.

foth schemes employ an approximation basis which consists of wave solu-~

tions of the form
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¢(B,Y) = exp[B(x-7Yt)],

where 7Y 1is the wave velocity. In the hyperbolic case Y = A and the

polynomial basis (1,xI- tA) results by setting ¢1 = ¢(0,4), ¢2 = ¢B(0,A).
For the convective-diffusion equation the dispersion relationship

Yy =a - VB holds. In addition to the polynomial solutions (1,x- at)

the function exp(ax/v) provides another linearly independent solution

for which y =0 when B = a/v. The basis (1, exp(ax/v)) 1is composed

of solutions of the steady-state equation au_ - vu = 0 and the method

described above can be used to directly provide a difference scheme for

the time-independent problem. The result is described by the two equations

(2.5a) and (2.5b) in which the term Gtuz is set equal to zero. For the

time-independent problem this same basis can be used to construct a Green's

function on each overlapping subinterval [x having its singularity

1-1°%341]

at x = X,, X, < x, <
i i

-1 § $Xpp0 @ technique which leads to a positive definite

tridiagonal difference scheme for Sturm-Liouville problems as shown in Rose
[12]. An equivalent point of view has been independently developed and
applied to similar singular perturbation problems which arise from steady-~
state problems (for example, c.f. Berger, et al. [1], El-Mistikawy and Werle
[3], I1'in {8], Rose [13]). 1In this sense the methods described in this
paper appear to provide the appropriate extention of such Green's function
techniques to time-dependent problems.

For the convective-diffusion equation a polynomial approximation basis

also results by taking

d)l = Q’)(O,a) =1
¢2 = ¢)B(O,a) = X - at
¢3 = % ¢BB(O’a) = %(X—at)z + vt.
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The difference scheme which is the consequence may be obtained from (II.3)
by setting q = 0. In view of earlier remarks this basis can be expected
to provide an accurate approximation only when the cell Reynolds number

6] 1is small.
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